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I. Phys.: Condens. Marter 5 (1993) 6263-6276. Printed in the UK 

Polaron-like features of the domain wall in a classical Ising 
chain with transverse field 

J TekiC, Z IviC, S Stamenkovic and R iakula 
Institute of Nuclear Sciences 'VinCa', Thwretid Physics 0epan"t OD, PO Box 522, 
i 1001 Belgrade, Serbia, Yugoslavia 

Received 5 Jsnualy 1993. in final form 5 April 1993 

Abstract. The passibility of the creation of thc bound state of a domain wall k d ' s m d i n g  
lanice distortion was investigated in the framewok of the onedimensional king model With 
transverse field. It was found that the existence of such an entiry is v"y sensitive to the mutual 
ratio of the basic physical p~ynetcrs of the system. We obtain that. in the wealrsoupling =-e. 
such a 'dressed' excitation can arise in the socalled unadiabaiic limit when the maximal phaaon 
energy greatly exceeds the nearest-neighbour exchange emrgy. In that w e ,  the 'dressing' effed 
can significantly m o d i  danGn-wall pmperties, causing the increase of its effecrive mass and 
lowering of the grcund-state enwgy, while the domain-wall velocity cannot exceed the speed d 
sound. 

1. Introduction 

In a recent paper [l], hereafter caUed~I, we have studied the dynamics of kink-like domain- 
wall (DW) excitations in the one-dimensional (ID) Ising chain (model) with transverse 
field (IMTF) within a vibrating three-dimensional (3D) crystal lattice.  it was found that 
the dynamics of a DW has the character of Brownian motion arising as a consequence of the 
emission and~absorption of acoustic phonons. These processes appear when the DW velocity 
(U) exceeds the phase speed of sound, i.e. when U > o,/q, thus revealing typical Cherenkov 
character. These predictions could be ielevant for the whole class of real substances where 
ID magnetic, ferroelechic or other highly anhgon ic  (structurally unstable) subsystems exist 
within 3D crystal lattices. As an example, let us mention ferromagnetic CoCIz '2NCsHs. 
which consists of widely separated -CoC12- chains embedded into a monoclinic crystal 
lattice, where each magnetic atom (CO) is surrounded by four C1 and two N atoms 121. In 
such nonmagnetic surroundings, the ratio of interchain (J')  to inlrachain ( J )  magnetic 
interaction is very small, being of the order of lo-' t2.31. Therefore, although the 
real structure is 3D (monoclinic), considering the magnetic properties only, the system 
behaves as a collection of weakly coupled, practically non-interacting, ferromagnetic 
chains. Furthermore, this system shows pronounced Ising behaviour, as confumed by 
the measuremenrs of magnetic specific heat and magnetic susceptibility, which agree with 
exact solutions of the ferromagnetic Ising chain [ZI. When exposed to a magnetic field 
orthogonal to the magnetization direction, the system can serve as an example of an IMTF. 
The whole family of ID ferromagnets that belong to the series of isomorphic transition 
halides AMB3 '2aq (A=Cs. Rb; M=Mn, CO, Fe: B e l ,  Br: and aq=HzO or DzO) [31, and 
uniaxial ferroelectric materials (CsHzP04 and PbsGgOll, for example) [4,5] also belong 
to the class of realistic systems in which ID Ising-lie subsystems exist within a 3D crystal 
lattice. 
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We have based our previous analysis [l] on the assumption of the weakness of 
the spin@seudospin&phonon interaction. Such an assumption enables one to utilize the 
collective coordinate method. which consists of treating kink momentum and position as a 
pair of canonically conjugated variables 111. In such a way we have derived an effective 
Lagrangian and Hamiltonian of the kink-phonon system where the kink subsystem is 
represented in terms of its canonical variables: position ((I) and momentum ~DW(I). The 
resulting effective Hamiltonian of the system greatly resembles the polaron one. provided that 
in this case our ‘polaron’ variables ((I) and p ~ w ( 1 )  are purely classical. This correspondence 
with the polaron problem is not merely formal. since, in principle. a soliton in a deformable 
medium can cause a local distortion of the surrounding lattice which can follow its motion 
instantaneously. As a consequence of such an essentialiy polaronic effect, one could expect 
possibly significant modification of DW parameters, especially its effective mass and ground- 
state (OS) energy. The degree of these changes depenaS on the values of basic physical 
parameters of the system. The weakness of spin@seudospin jphonon coupling allowed us 
to neglect such possibilities in our previous paper [l]. However, it is not always justified: 
thence in the present paper we wish to investigate the intluence of the phonon dressing 
(polaronic effect) on DW properties. In particular, special anention is paid to the analysis of 
the degree of modification of DW effective mass and energy due to kink-phonon coupling. 
As a starting point of our analysis we shall use the ‘non-relativistic’ limit of the effective 
kink-phonon Hamiltonian introduced in I (see equation (17) therein): 

1 
H&= A E +  --C9exp(iq.€)(b9+b+,) + ~ h 9 b ~ b 9 .  (1.1) 

JN 4 9 

Here we have avoided the detailed derivation procedure of the above Hamiltonian, which 
is presented in I. Thus we quote only a few basic remarks concerning the parameters of the 
model. First, we recall that in the so-called crilical regime (or ‘displacive’ regime, as it is 
customarily named in dynamics of highly anharmonic strucfwally unstable crystals) when 
A = J / 2 Q  >, A, (A. = l p ) ,  the DW excitation is represented by the kink-like prolile [6] 

S&, 1 )  = &$tanh[(y/Ro)(x - X O  - ut)/2)1 ( 1 .a 
where its amplitude and inverse width are, respectively, defined by 

s,” = Z(A - A , ) ” ~  Y I R ~  ( Z ~ / R ~ ) [ ( A  - AJ(I - g2)11/2. (1.3) 

Here g = U / U O ,  uo = O R o j h a  is the Limiting DW velocity, RO is the lattice constant of the 
ISing chain: the msverse  (actual magnetic or effective tunnelling-like) field Q is smaller 
than the value of the longitudinal (nearest-neighbour) intrachain coupling J, so the ordering 
(spontaneous polarization in S,) can occur only if Q < J (A 2 A,) [71. The corresponding 
energy of the single Dw relative to the GS in (1.1) is defined by the expression [6] 

AE = (J/6&)(S:)3/(1 - j32)‘/2. ( 1.4) 

Here, with respect to [l] and [6], a wrong numerical factor inessential for further analysis has 
been corrected. Namely the DW energy (1.4), which was obrained after direct substitution 
of kink solution (1.2) into the definition of the energy of a DW (equation (2.14) in [l]), is 
three times lower than the corresponding expression in [l] and [6] (i.e. equations (10) and 
(2.24) in [a] and [l], respectively). The numerical discrepancy is probably the consequence 
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of the qualitative character of the limiting value used in [6]. The interaction term in (1.1) 
is characterized by an effective kink-phonon coupling parameter G, = [fi (q) + fi(q)lFq 
with f ~ ( q )  and f z ( q )  being DW form factors defined in I: 

denotes the Fourier component of the original spin@seudospin)-phonon interaction induced 
by the  coupling^ slrength a = (aJ/ax),,, , ,  M is the mass of each magnetic (or 
fenoelectricaUy active) ion and e, is the polarization vector of longitudinal acoustic phonons 
with frequency o9 (e, = q/lql). The last term in (1.1) is the pure phonon Hamiltonian in 
standard form. The effective Hamiltonian (1.1) was derived k & r  the assumption that weak 
spin-phonon interaction does not change the character of soliton solution (1.2), causing only 
a slight modiKcation of its parameters. Therefore our analysis b;f the influence of phonon 
dressing on DW properties will be restricted to the so-called intermediate and weak-coupling 
limit. For that purpose we shall utilize the method of Lee, Low and Pines (LW) [SI. Our 
approach to the spin-phonon coupling is quite different from that of Uchiyama er ai 191, 
TsGg et 01 [lo] and Zvezdin and Popkov [ll]. They considered the coexistence and 
simultaneous propagation of magnetic and lattice solitons in order to explain anomalies in 
DW velocity (U) versus applied magnetic field (H) dependence, arising when DW velocity 
approaches the speed of sound. In the above-mentioned papers these anomalies, which were 
experimentally observed in orthofemtetype ferromagnets F e 0 3  and TmFa03 [12-141, 
have been atbibuted to Uie enormous growth of the magnitude of lattice-distortion (i.e. lattice 
soliton amplitude) occurring when thebw velocity tends to that of sound-longitudinal (q) 
m b’ansverse (CL). On the other hanb, in the series of papers by Bar’yakh& and Ivanov with 
co-workers [15-17] the same effect was ascribed to the DW damping due to Chexenkov-li 
radiation of acoustic~waves arising when the DW velocity in the rigid lattice exceeds the 
phase Speed of sound (i.e. v 2 o,/q). Their theory lies upon the assumption of weak spin- 
phonon coupling, which allows a perturbative treatment, thus disregarding the relevance 
of DW ‘dressing’ for the understanding of magnetoelastic anomalies. So we encounter the 
situation where the same experimentally observed effect has been assigned to two different, 
mutually opposite, types of phonon-field behaviour. W e  first concept [9-111 assumes the 
classical nature of phonons, predicting common propagation of lattice and spin (magnetic) 
solitons. On the other hand, the second concept presumes the purely quantum name of 
the phonon field and propagation of the DW in a rigid lattice. We reason why we point 
out this controversy here is not to criticize any of these approaches but rather to illustrate, 
by hiis particuh example, the necessity of determining the circumstances when ‘dressing’ 
(polaronic effect) should prevail with respect to the case when it can be neglected. 

In the present paper we shall analyse the possibility of the creation of a ‘dressed‘ 
kink (i.e. a kink surrounded by a cloud of virtual phonons) in the l h m  within a vibrating 
3D lattice. Although confined to this particular model, we expect that our analysis, in 
principle, could also be relevant for a much wider class of materials including the above- 
mentioned examples of orthofenite-type ferromagnets. Namely, in most materials with 
domain structure possessing weak magnetoelastic coupling, it is possible to obtain an 
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effective kink-phonon Hamiltonian similar to (1.1) with slightly modified parameters. Thus 
one can make the assenion that an analogous procedure can be carried out in those cases 
too. 

2. Modification of domain-wall parameters due to polaronic effect 

In order to examine the influence of phonon dressing on DW characteristics, we shall start 
with a 'non-relativistic' (v << VO) version of the effective kink-phonon Hamiltonian 

where EO = J(S,0)'/6JZ is the DW rest energy while N is the total number of lattice sites. 
In accordance with such an approximation and henceforth adopting the continuum limit 

(q . & + 0). for the convenience of further calculations we simply substitute the reduced 

an immobile soliton (DW) of mass M = 2h(S:)3/6JRi [1,6]. The index '0' herein indicates 
the limit B -+ 0. 

There are t h e  basic physical parameters determining the energy spectrum of the kink- 
phonon system and consequently they also determine the degree of 'dressing' of the DW 
by the cloud of virtual phonons. The parameters are: nearest-neighbour exchange energy 
J ,  maximal phonon frequency (width of phonon band) om and finally the so-called lattice 
relaxation energy ED = (I/N) E, iGq12/hwq representing the lowering of the GS energy of 
the system in the transportless limit ( J  -+ 0 or M + 03) [181, when Hamiltonian (2.1) can 
be exactly diagonalized by appropriate unitary transformation [191. ED can be calculated 
easily using the well known rule for calculating the sums over the phonon quasimomenta 

parameters, ~ o / R o  2JT(A-IC)/R0,  fi (S;)'/yo and fi N (S,0)2Vo/3, corresponding to 

[ ~ ~ q 2 ~ ~ K s i n B d B  for isotropic phonon spectrum: 
2qD 0 

1 0, = colql -E... = (2.2) 
N 4  qL dqi for anisotropic phonon spectrum: 

I 
Here CO. cll and cl are average, longitudinal and transverse speeds of sound, respectively, 
while index D is associated with Debye's momentum. The limiting wavenumben qp and qy 
can be approximated by n/Ro and ~ / R I  respectively, where RI is the interchain distance. 
Explicit calculation gives the following results: 

(2.3a) I (0) ED = ?ED 

for the isotropic phonon spectrum and 

(2.3b) 
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for the anisotropic phonon s p e c m .  
In the high-anisotropy limit, qp > qy, and cI, >> CL, one Bnds 

where terms proportional to the powers of qy/qf represent the corrections to the pure ID 

result. Here E:) = a2R;(fi + f2)2/2M4 (cg -+ cII for anisotropic phonons) defines the 
lattice deformation energy for the fully 3D or ID system. 

To evaluate the impact of 'dressing' on DW parameters, we use the LLP m e t h d  We 
fmt exploit the fact that the total momentum of the system 

P = PDW + Xf iqbJbq  (2.5) 
9 

is the constant of motion. So we perform the canonical transformation 

E' = pvw = P - x f i q b : b 9  (2.6) 

and then following the LLp method we eliminate the kink position F ( l )  by the unitary 
transformation 

9 

(2.7) 

so we obtain transformed Hamiltonian 

After the second unitary transformation 

we find the new transformed Hamiltonian consisting of two parts 

Hnew = Ho + HI (2.10) 

where Ho and HI are defined as follows: 

(2.11) 
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and 

(2.12) 

Here p9 is a variational parameter determined by the minimization of GS energy, EGS = 
(0lphifmwIo)ph: 

The total momentum P of the system, being the constant of motion, should be considered 
as a classical variable. It defines the only preferred direction in the problem, therefore 
fi E, qlpq 1' can only differ from P by a scalar factor. Thus we can write: 

The scalar parameter q can be determined self-consistently from the relation 

(2.14) 

(2.15) 

which follows from (2.13) and (2.14). We can now substitute p9 into EGS to obtain the 
energy of the 'dressed' DW: 

IGq1' (2.16) 
P2 1 E ( P )  = Eo + -(1- $1 - - 
2m N ho, +h2q2/(2m) -hq .  P(1- q)/m' 

According to this relation the kink velocity rea.& 

w = (l/m)VpE(P) z (P/m)(l - q) 
a a a 

ap, a p ,  apz  
Vp = e,- + ey- f eZ-- 

(2.17) 

Writing the kink momentum as P = m*u we see that the effective mass of a 'dressed' kink 
takes the form 

m* = m/(l- q ) .  (2.18) 

Further evaluation of both kink effective mass and energy becomes a rather technical 
problem since it is reduced to the calculation of sums over the phonon quasimomenta 
in (2.15) and (2.11). Transforming the summation to an integration in accordance with the 
above-adopted rule (2.2) we have 

E ( P )  = Eo + (Pz/2m)(l - q') - E t )  J(v)  (2.19) 
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where. U = 1 ~ 1 ,  while the integral 

stands for the case of the isompic phonon specmm. Parameter b = fiqDj2mCO plays 
the role of the so-called 'adiabatic parameter' known from the polaron theories 1201. For 
anisotropic phonons J ( v )  is given by 

For isompic phonons, the calculation is straightforward, and after a long and rather tedious 
procedure one obtains 

(2.23) 

From this expression it is readily seen that kink velocity cannot exceed the speed of sound, 
since, in accordance with (2.19), the DW energy becomes singular when U approaches CO. 
For a slow DW one can expand the above expression (2.23) in powers of small U/CO to put 
it in the form 

For anisotropic phonons J ( u )  can be calculated only approximately. After some simple 
manipulations we can rewrite (2.22) in a form that is more appropriate for practical 
calculation: 
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These integrals can be calculated in the high-anisompy limit: 

1 
1 - (v2 + c:,/c; - 1 

1 
b 

J ( ~ ) 2 - h ( l + b )  

x -- 1 -  c: ) + ($) (1- 1 - c",ci v2/c; )] (2.26) [$ ( ci(1 - vz/c;)3'* 

where now b = fiqp/2mcli. 
With the help of these results we can 6nd the energy of the slowly moving dressed DW 

E ( P )  = Eo - 6E + P2/2m* (22727) 

which is valid for both types of phonon spectrum we have analysed here. SE denotes the 
lowering of the kink energy caused by the polaronic effect. It is given by the following 
expressions: 

(i) Isotropic phonons 

(2.28) 
SE:) 

A = - ( ln( l+ b) - A 
q=- 

1 + A  7mcab3 

where S = E D / f i w  is the kink-phonon coupling constant as usually defined in the context 
of the polaron problem [ZO]. 

Ki) Anisotropic phonons 

A' q=- 
1+ A' 

(2.29) 

The degree of dressing is determined by the mean number of virmal phonons ii 
involved in the formation of lattice distortion. Using a similar procedure as (ij = E, 

for calculation of 6 E and q for isotropic and anisotropic phonons we find respectively: 
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and 

(2.31) 

The above results show that DW dressing in a weak-coupling limit is the mOSt significant in 
the non-adiabatic regime (b  <c 1). In that case modiEcations of kink parameters as well as 
the number of virtual phonons approach their maximal values, while the ‘dressing’ effect 
vanishes in the adiabatic regime (b >> 1). 

However, it does not mean that phonon ‘dressing’ does not affect DW at a l l  in that 
regime. Quite on the contrary it only reflects the inadequacy of the present ‘weak-coupling’ 
approach in the adiabatic limit when the phonon subsystem can be regarded as a classical 
one. 

3. Range of validity 

Having in mind the approximate character of the variational ueabnent discussed above, we 
need to ay to estimate the range of validity of our results. It is of particular interest to 
compare the present results with those obtained in I. Namely, since in both cases we have 
assumed the weakness of the kink-phonon interaction, in the sense that it does not change 
the character of soliton solutions, it is necessary to determine whether the DW behaves as a 
‘dressed‘ entity rather than a bare one. 

Writing the effective kink-phonon Hamiltonian (2.1) in the dimensionless form 

(3.1) 

we see that all the main features of the DW within a vibrating lattice are determined by two 
parameters only: adiabatic parameter b and kink-phonon coupling constant S, which were 
defined in the previous section. Here = 540 are the corresponding 
dimensionless DW momentum and position, respectively, while Q = 4/40. From (2.8) 
it follows that the first U P  transformation exactly diagonalizes this Hamiltonian in the 
h’ansportless limit (b + 0 or m + m). In the case of finite adiabaticity the value of the 
coupling constant S plays the essential role. So, for example, in the strict weak-coupling 
regime S < 1, the dressing effect does not inauence DW properties Sigiificantly. Thus 
the problem of kink-phonon interaction can be treated perturbatively, as was done in I. 
In that case the DW propagates along the rigid lattice and its dynamics is determined by 
the interaction with real phonons excited when the DW velocity exceeds the phase speed 
of sound. Such an interpretation is satisfactory as long as the adiabatic parameter is high 
enough. However, if b << 1 the properties of the DW should be similar to those of small 
polarons and the continuum model used here is no longer applicable. For that reason the 
theoretical approach should be modified to incorporate the proper treatment of discreteness 
effects and the real quantum nature of the spin (pseudospin) system. 

= Pow/li2qi and 
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According to the results of the preceding section the DW 'dressing' becomes Significant 
if S > 1 and for small but finite values of b. In that m e  the DW recoil l d n e t i C  energy 
introduces a correlation between the emission of successive virtual phonons, which will tend 
to limit the validity of the method employed here. Since the variationat calculation that was 
performed is equivalent to the transfonnation H -+ HO + H1, we can estimate the validity 
of OUT calculation by determining the lowest-order correction to the DW energy resulting 
from that pan of the Hamiltonian which was neglected so far. Since we have fwnd fir by 
minimizing the energy, Ho is diagonal and the lowest phonon state is simply the vacuum one 
([O)ph)r while H I  should be considered as small, so it is possible to estimate its conlriiution 
using standard perturbation theory. However, in what follows we shall deviate from that 
general rule and instead of a perturbation calculation we shall find the new normal modes 
of that part of the transformed Hamiltonian which is quadratic in phonon operators. For 
that plnpose we rewrite the transformed Hamiltonian as 

4 
31 = 31'"' 

n=O 

where 

7.1"' = Eo + P2 1%' - SE 
7.1(') = 0 

'Ha) can be exactly diagonalized using standard Bogoliubov-Qablikov (BT) unitary 
transformation [21]. In order to simplify the practical calculations, we first perform the 
Fourier transform of phonon operators 

1 - - exp(-iq I n)b.  
--.JN 

to obtain E(*) in a form that is very convenient for direct application of the BT method: 

where 

(3.3) 
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fq = -i&. 

Introducing the new Bose operators $(a i )  in accordance with standmi BT procedure 

b, = c U n k ? l k  f V Z k Q  r )k  = C&bn - d b ;  (3.5) 
k n 

we can write Hamiltonian (3.3) in the diagonal Form 

U” = A E  4- Ekq:qt. (3.6) 
k 

Choosing 

and after summation over n ,  we obtain 

. EkUk 7 zkuk - A k V k  

- EkVk Z k V k  - Ai&. 

Here 

(3.8) 

(3.9) 

From the condition that homogeneous system (3.9) has non-hivial solutions uk and vk we 
find the specmm Ek in the form 

Et = (Z: - A:)”2 = m2Gi + (2h3/m)k26kff]”2. (3.10) 

Finally, using equations (3.9) and the orthogonality condition for the functions (U,  U). which 
in this case reads 

(3.11) U; - vf = 1 
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one can easily prove the following relations: 

(3.12) 

With the help of these relations we can find the corresponding correction to the CS energy 

(3.13) 

The second sum in this expression represents the contribution to the energy which arises 
from 1-1“ after its proper ordering in terms of new operators qk and qz. Transforming the 
summation in (3.13) to an integration, in accordance with previously adopted rules (2.2), 
we can finally express A E  through the parameters S and b as follows: 

(3.14) ($ - $b + $b2) for isotropic phonons S2b2 
A E  N I 

-limS2b2(1 - 3b +7b2) for anisotropic phonons. 

In performing the explicit calculation of A E  we have assumed the smallness of adiabatic 
parameter (b 4 I), which is precisely the limit where one can expect considerable influence 
of phonon ‘dressing’ on DW properties. Since, in  principle, the first CorreCtion to the energy 
A E  should not exceed the basic conhibution SE, we expect that the present approach is 
satisfactory as long as A E  << SE. Adopting this criterion one can find the maximal value 
of the coupling constant S ,  for each b, which represents the upper bound of the applicability 
of the present method. Unfortunately this criterion does not offer any possibility for the 
precise determination of the numerical values of S and b for which the DW demonstrates 
polaron-like behaviour. So. for example, for b = 0.5 we found that S < 7.8, while for 
b = 0.1, S << 102. So the estimated value of the coupling constant is too high and 
we believe that the maximal realistic value of S should be significantly smaller. This 
follows from the fact that the spin-phonon interaction in the strongcoupling limit should 
modify the character of soliton solutions and therefore the effective Hamiltonian (2.1) is 
no longer a good basis for a description of a kink-phonon interaction. Consequently the 
method utilized here is no longer applicable and the theoretical description as well as the 
physical picture depend on the values of the ‘bare’ adiabatic parameter bo - J / h Q  and the 
strength of the original spibphonon coupling SO = (1/N) E, IFq12/h20~, which we define 
in analogy with corresponding parameters known from the polaron problem and theories of 
self-trapping [18,201. 

If b >> 1 the classical nature of phonons prevails and for that reason theoretical 
treatment of the spin@seudospin)-phonon coupling should be analogous to the theories of 
large adiabatic polarons [18,20,221. In that case the problem is practically reduced to the 
analysis of the system of coupled non-linear equations describing the simultaneous evolution 
of magnetic (or dipolar electric) and elastic degrees of beedom. Such a theory predicts 
coexistence and simultaneous propagation of the spin (pseudospin) and lattice solitons as 
was shown in a number of related papers [%11,23-26]. However, at present, owing to the 
differences in the dimensionality of spin and phonon subsystems, such an analysis is much 
more complicated. It particularly follows from the recent study of Brown and IviC [27], 
where the existence and stability of large adiabatic polarons in linear molecular crystals 
within a 3D lattice was examined. For that reason this interesting aspect of spin-phonon 
coupling deserves separate examination. 
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In the strong-couplig non-adiabatic regime, SO >> 1 and bo << 1, the real quantum 
nature of both subsystems plays the essential role, so we encounter a problem that cannot be 
successfully treated by any of the above-mentioned methods. In that case the spin-phonon 
Hamiltonian can be. partially diagonalized by appropMte unitary transformation known from 
the theory of small polarons [191. The subsequent diagonalization can be carried out in a 
form of perturbation expansion i n  terms of small parameter bo. However, this case, as well 
as the strong-coupling adiabatic limit, is beyond the scope of the present study. For that 
reason we are not in a position to determine precise numerical values of S and b or SO and 
bo which support any of the abovementioned types of DW behaviour. 

Therefore we can only roughly estimate that the predicted polaron-like behaviour of DWs 
should occur in the non-adiabatic (b < 1) intermediate-coupling (S 1) limit. Choosing 
the values of S and b from this intermediate region of parameter space (approximately 
0.1 < b < 0.5 and 1 < S < 5)  we find a relative correction of the energy of approximately 
1 to 15%. 

4. Summary 

Concluding this paper, we emphasize that the method employed here provides a reasonably 
good basis for the understanding of kink-phonon interaction in the intermediate-couplig 
lit. In that case we predicted polaron-like behaviour of Dws, which motion  is that of a 
free particle with an effective mass-m* = m / ( l  - q ) ,  which is high& than ha t  of a bar& DW, 
while its energy is lower than in the rigid lattice. Applicability of the method is satisfactory 
as long as DW velocity is sufficiently small so that no spontaneous Cherenkov-like emission 
of red phonons can occur (i.e. v < CO and v < CII for isotropic and anisotropic phonon 
spectra, respectively). 

The influence of the difference in dimensionality of two constituent subsystems is 
manifested through a significant lowering of the polaronic effect in such systems with 
respect to those where both subsystems are of the same dimensionality. It can be seen f” 
the explicit expressions for the lattice relaxation energy ED and the shift Of%S energy SE, 
which are five times less than in the~purely 1D or 3D systems (equations (2.3) and (2.28)) 
for isompic phonons. For the anisotropic phonons this lowering of ‘dressing’ can be seen 
from equations (2.4) and (2.29) where all terms proportional to powers of smdl parameter 
434 ;  represent corrections to the pure ID result. mi lowering of the p o h n i c  effect  is^ 
the consequence of the a n g u h  dependence of the Fourier component of the spin-phonon 
interaction through the term e4 . e, = cos8 < 1. In purely ID and 3D systems this term 
approaches unity. 

We would finally l i e  to point out that the spin-phonon interaction is not the only 
mechanism that can induce DW dressing. Namely a proper treatment of DW dynamics in 
realistic substances demands taking into account the interaction of DWS with the linear 
excitations of spin (pseudospin) system-magnons @seudomagnons), which could $so 
conaibute to DW dressing. An analogous effect was discovered by Koehler er al 1291 
in the molecular dynamics simulation of a (o-four model ((04) where linear excitations 
around soliton soiutions (i.e. ‘phonons’) played precisely the same role as magnons 
@seudomagnons) in the framework of Im. Therefore the magnon dressing of DWS and its 
examination should also be an interesting problem. 
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